<thead id="fflbj"><font id="fflbj"><cite id="fflbj"></cite></font></thead>
    <progress id="fflbj"><thead id="fflbj"><font id="fflbj"></font></thead></progress>

            課程目錄:R語言機器學習學術應用培訓
            4401 人關注
            (78637/99817)
            課程大綱:

                      R語言機器學習學術應用培訓

             

             

             

             

            R語言機器學習學術應用
            基礎
            Theory: Features of time series data and forecasting basics

            R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

            中級
            Statistical Learning (SL):

            (0.5 Hour) One-step forecasting: one-step ahead model fit

            (0.5 Hour) Multi-step forecasting: recursive and direct methods

            (6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例實做與寫作范例

            (5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例實做與寫作范例

            R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

            Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.

            538在线视频二三区视视频